skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kraus, Adam L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Young associations provide a record that traces the star formation process, and the youngest populations connect progenitor gas dynamics to the resulting stellar populations. We therefore conduct the first comprehensive overview of the Circinus Complex, an understudied and massive (∼1500M) region consisting of approximately 3100 recently formed stars alongside the Circinus Molecular Cloud. We find a clear age pattern in the contiguous central region (CirCe), where younger stars are found farther from the massive central cluster, and where the velocities are consistent with uniform expansion. By comparing this structure to an analogous STARFORGE simulation, we find that the age structure and dynamics of the association are consistent with star formation in two stages: the global collapse of the parent cloud that builds the 500Mcentral cluster ASCC 79, followed by triggered star formation in a shell swept up after the first massive stars form. We also find that filaments with a range of distances from the central cluster can naturally produce multigenerational age sequences due to differences in feedback strength and exposure. Outlying populations show velocities consistent with formation independent from the CirCe region, but with similar enough velocities that they may be difficult to distinguish from one another later in their expansion. We therefore provide a new alternative view of sequential star formation that relies on feedback from a single central cluster rather than the multiple sequential generations that are traditionally invoked, while also providing insight into the star formation history of older populations. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  2. Abstract We present the discovery and characterization of TOI-4364b, a young mini-Neptune in the tidal tails of the Hyades cluster, identified through TESS transit observations and ground-based follow-up photometry. The planet orbits a bright M dwarf (K= 9.1 mag) at a distance of 44 pc, with an orbital period of 5.42 days and an equilibrium temperature of 48 8 7 + 9 K. The host star's well-constrained age of 710 Myr makes TOI-4364b an exceptional target for studying early planetary evolution around low-mass stars. We determined a planetary radius of 2.0 1 0.08 + 0.10 R , indicating that this planet is situated near the upper edge of the radius valley. This suggests that the planet retains a modest H/He envelope. As a result, TOI-4364b provides a unique opportunity to explore the transition between rocky super-Earths and gas-rich mini-Neptunes at the early stages of evolution. Its radius, which may still evolve as a result of ongoing atmospheric cooling, contraction, and photoevaporation, further enhances its significance for understanding planetary development. Furthermore, TOI-4364b’s moderately high transmission spectroscopy metric of 44.2 positions it as a viable candidate for atmospheric characterization with instruments such as JWST. This target has the potential to offer crucial insights into atmospheric retention and loss in young planetary systems. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  3. Abstract The characterization of young planets (<300 Myr) is pivotal for understanding planet formation and evolution. We present the 3–5μm transmission spectrum of the 17 Myr, Jupiter-size (R∼10R) planet, HIP 67522b, observed with JWST NIRSpec/G395H. To check for spot contamination, we obtain a simultaneousg-band transit with the Southern Astrophysical Research Telescope. The spectrum exhibits absorption features 30%–50% deeper than the overall depth, far larger than expected from an equivalent mature planet, and suggests that HIP 67522b’s mass is <20Mirrespective of cloud cover and stellar contamination. A Bayesian retrieval analysis returns a mass constraint of 13.8 ± 1.0M. This challenges the previous classification of HIP 67522b as a hot Jupiter and instead, positions it as a precursor to the more common sub-Neptunes. With a density of <0.10 g cm−3, HIP 67522 b is one of the lowest-density planets known. We find strong absorption from H2O and CO2(≥7σ), a modest detection of CO (3.5σ), and weak detections of H2S and SO2(≃2σ). Comparisons with radiative-convective equilibrium models suggest supersolar atmospheric metallicities and solar-to-subsolar C/O ratios, with photochemistry further constraining the inferred atmospheric metallicity to 3 × 10 solar due to the amplitude of the SO2feature. These results point to the formation of HIP 67522b beyond the water snowline, where its envelope was polluted by icy pebbles and planetesimals. The planet is likely experiencing substantial mass loss (0.01–0.03MMyr−1), sufficient for envelope destruction within a gigayear. This highlights the dramatic evolution occurring within the first 100 Myr of its existence. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract The dispersed remnants of stellar nurseries, stellar associations, provide unparalleled samples of coeval stars critical for studies of stellar and planetary formation and evolution. The Carina Stellar Association is one of the closest stellar associations to Earth, and yet measurements of its age have varied from 13 to 45 Myr. We aim to update the age of Carina using the lithium depletion boundary (LDB) method. We obtain new measurements of the Li 6708 Å absorption feature in likely members using optical spectra from the Goodman High Throughput Spectrograph on SOAR and NRES on LCO. We detect the depletion boundary atMK≃ 6.8 (M5). This age is consistent within uncertainties across six different models, including those that account for magnetic fields and spots. We also estimate the age through analysis of the group’s overall variability, and by comparing the association members’ color–magnitude diagram to stellar evolutionary models using a Gaussian Mixture Model, recovering ages consistent with the LDB. Combining these age measures we obtain an age for the Carina association of 41 5 + 3 Myr. The resulting age agrees with the older end of previous age measurements and is consistent with the lithium depletion age for the neighboring Tucana-Horologium moving group. 
    more » « less
  5. Abstract Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods—isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability—we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80–110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (NotchandLOCoR). We find that the planets are 2.10 ± 0.09Rand 2.88 ± 0.10Rand orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K= 9.1 mag), small (R*= 0.44R), and cool (Teff= 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST. 
    more » « less
  6. Abstract Young eclipsing binaries (EBs) are powerful probes of early stellar evolution. Current models are unable to simultaneously reproduce the measured and derived properties that are accessible for EB systems (e.g., mass, radius, temperature, and luminosity). In this study we add a benchmark EB to the pre-main-sequence population with our characterization of TOI 450 (TIC 77951245). Using Gaia astrometry to identify its comoving, coeval companions, we confirm TOI 450 is a member of the ∼40 Myr Columba association. This eccentric (e= 0.2969), equal-mass (q= 1.000) system provides only one grazing eclipse. Despite this, our analysis achieves the precision of a double-eclipsing system by leveraging information in our high-resolution spectra to place priors on the surface-brightness and radius ratios. We also introduce a framework to include the effect of star spots on the observed eclipse depths. Multicolor eclipse light curves play a critical role in breaking degeneracies between the effects of star spots and limb-darkening. Including star spots reduces the derived radii by ∼2% from a unspotted model (>2σ) and inflates the formal uncertainty in accordance with our lack of knowledge regarding the starspot orientation. We derive masses of 0.1768( ± 0.0004) and 0.1767( ± 0.0003)M, and radii of 0.345(±0.006) and 0.346(±0.006)Rfor the primary and secondary, respectively. We compare these measurements to multiple stellar evolution isochones, finding good agreement with the association age. The MESA MIST and SPOTS (fs= 0.17) isochrones perform the best across our comparisons, but detailed agreement depends heavily on the quantities being compared. 
    more » « less
  7. Abstract We report an Atacama Large Millimeter/submillimeter Array 0.88 mm (Band 7) continuum detection of the accretion disk around SR 12 c, an ∼11 M Jup planetary-mass companion (PMC) orbiting its host binary at 980 au. This is the first submillimeter detection of a circumplanetary disk around a wide PMC. The disk has a flux density of 127 ± 14 μ Jy and is not resolved by the ∼0.″1 beam, so the dust disk radius is likely less than 5 au and can be much smaller if the dust continuum is optically thick. If, however, the dust emission is optically thin, then the SR 12 c disk has a comparable dust mass to the circumplanetary disk around PDS 70 c but is about five times lower than that of the ∼12 M Jup free-floating OTS 44. This suggests that disks around bound and unbound planetary-mass objects can span a wide range of masses. The gas mass estimated with an accretion rate of 10 −11 M ☉ yr −1 implies a gas-to-dust ratio higher than 100. If cloud absorption is not significant, a nondetection of 12 CO(3–2) implies a compact gas disk around SR 12 c. Future sensitive observations may detect more PMC disks at 0.88 mm flux densities of ≲100 μ Jy. 
    more » « less
  8. Abstract Young terrestrial worlds are critical test beds to constrain prevailing theories of planetary formation and evolution. We present the discovery of HD 63433 d—a nearby (22 pc), Earth-sized planet transiting a young Sun-like star (TOI-1726, HD 63433). HD 63433 d is the third planet detected in this multiplanet system. The kinematic, rotational, and abundance properties of the host star indicate that it belongs to the young (414 ± 23 Myr) Ursa Major moving group, whose membership we update using new data from the third data release of the Gaia mission and TESS. Our transit analysis of the TESS light curves indicates that HD 63433 d has a radius of 1.1Rand closely orbits its host star with a period of 4.2 days. To date, HD 63433 d is the smallest confirmed exoplanet with an age less than 500 Myr, and the nearest young Earth-sized planet. Furthermore, the apparent brightness of the stellar host (V≃ 6.9 mag) makes this transiting multiplanet system favorable to further investigations, including spectroscopic follow-up to probe the atmospheric loss in a young Earth-sized world. 
    more » « less
  9. Abstract We use three campaigns of K2 observations to complete the census of rotation in low-mass members of the benchmark, ≈670 Myr old open cluster Praesepe. We measure new rotation periods (Prot) for 220 ≲1.3 M Praesepe members and recovery periods for 97% (793/812) of the stars with aProt in the literature. Of the 19 stars for which we do not recover a Prot, 17 were not observed by K2. As K2’s three Praesepe campaigns took place over the course of 3 yr, we test the stability of our measured Prot for stars observed in more than one campaign. We measure Prot consistent to within 10% for >95% of the 331 likely single stars with ≥2 high-quality observations; the median difference in Prot is 0.3%, with a standard deviation of 2%. Nearly all of the exceptions are stars with discrepant Prot measurements in Campaign 18, K2’s last, which was significantly shorter than the earlier two (≈50 days rather than ≈75 days). This suggests that, despite the evident morphological evolution we observe in the light curves of 38% of the stars, Prot measurements for low-mass stars in Praesepe are stable on timescales of several years. A Prot can therefore be taken to be representative even if measured only once. 
    more » « less